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Abstract. We consider the problem of two classical point particles in circular orbits, each 
interacting with the retarded classical scalar field of the other. We find a unique solution 
for the massless field, but no solution for the massive field. 

1. Introduction 

Very few examples are known of exact solutions to the special relativistic two-body 
problem with physically reasonable retarded interactions, and with radiation effects 
included. In a previous paper [ l ]  we have considered this problem with retarded 
classical electromagnetic interaction. We found a unique solution for the case when 
the two equal-mass, opposite-charge particles are diametrically opposed in circular 
orbits. The radiation reaction force was exactly compensated by the tangential com- 
ponent of the Lorentz force, and the system drew upon its infinite self-energy as the 
source of radiation. Here we wish to consider the same system, but with a retarded 
classical scalar interaction. We find again a unique solution for the case of a massless 
field, but no solution for the massive field case. 

2. Method of solution 

The classical scalar field of mass p satisfies? 

( a 2 + p 2 ) 4 = - g  ~ ( x - z ( s ) )  ds I 
where the right-hand side is the source due to a point particle with scalar charge g 
and worldline z ( s ) .  We initially confine our attention to the case p = 0. The retarded 
solution of (1) at the event x is then [2] 

t We use a subscriptless notation for 4-vectors (see [2]). For example, we have U = dx/ds, a = dv/ds, J = J/ax 
(with components J /Jx") ,  JR = ( l + a .  R ) R / p - u .  The dot product is with respect to the metric 17 = 
diag( - 1,1,1,1). 
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where p = - R U is the invariant distance corresponding to the retarded separation in 
the rest frame, Here R = x - z(so), where so is the solution of R * R = 0, Ro> 0. The 
equation of motion of a particle of charge g and mass m in a field 4 is [ 3 ,  p 56]? 

(3) 
d 

-[(m + g 4 ) u l  = - g W  ds 

Thus if Fe,, represents the external 4-force, we have 

Fe,, = ma = -g[&$ (7 - v u )  - d a ] .  ( 4) 

However, like the Lorentz force law of electromagnetism, this equation does not include 
the interaction of the particle with its own field. Barut and Villaroel [ 4 ]  have shown 
that when this is taken into account, the equation of motion becomes 

g‘ ma = Fe,, +- ( U  - vu’) = Fe,,+ F,, 
3 

which is entirely analogous to the Lorentz-Dirac equation for electromagnetism, except 
for the factor f instead of 3 in the radiation reaction term F,,. However, the nature of 
the external force Fe,, is different and necessitates a reworking of our analysis of [l]. 
We wish to evaluate this force for two diametrically opposed particles in circular 
motion with separation 2r, and to see whether the scalar Lorentz-Dirac equation ( 5 )  
can be satisfied. To achieve this we calculate the space components of the external 
and radiation reaction forces. From equation ( 2 ) ,  the field produced by the source 
particle (which we label 2 )  at the diametrically opposite point (the position of particle 
1) is 

(6) 
where y = (1 - U’)”’*. Here a is the retardation angle, the angle between the actual 
and retarded positions of the source particle, as observed from the other particle, 
which therefore satisfies the geometric retardation condition U = a/cos a. Thus the 
space component of the scalar Lorentz-Dirac equation (4) for particle 1 is 

( 7 )  

4 = - g 2 [ 2 r y  cos a (  1 + U sin a)] - ’  v4 = -g , (YU- Y - 2 r l P ) l P 2  

m , y 2 a  = - g , [ a y 2 4  + v 4 ]  - y 5 g : u u 2 / ( 3 r 2 ) .  

Thus by taking the scalar product of (7) with unit vectors i snd 5 in the radial and 
tangential directions we have 

- m , y 2 u 2 / r = g , y 2 v 2 / r - g l i *  ~4 O = g , 5 . V ~ + y 5 g ~ u 3 / ( 3 r 2 ) .  (8) 

If we now insert the field (6) and let m1 = m2 and g ,  = g ,  (like particles attract), we 
obtain the transcendental equation 

( 9 )  

for the retardation angle a, together with the retardation condition U =  a/cos a. 
Graphing the left-hand side of this equation, we see that it has a unique solution a. 
for U in (0 , l ) .  Using Brent’s algorithm [ 5 ]  for zero finding, we obtain numerically 
a. 5 0.454 64. We note that this value is obtained from geometric considerations alone. 
We have therefore satisfied the scalar Lorentz-Dirac equation for particle 1, and so 
by symmetry, that for particle 2 also. To complete the solution it is merely necessary 
to solve the first equation (8) for r. Introducing the fundamental length A = g 2 / m ,  it 
gives r /  A = 0.523 65.  

1 - ~ y 6 u 2 [ c o s  a ( l +  U sin a)]’  = o 

t Note,  however, that  here we use units with c = 1 
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3. The massive field 

We wish to examine the possibility that a similar solution exists for the case of a 
massive scalar field. For this we make use of the retarded Green function for equation 
(1) [3, P 1601: 

2 1/2 J1(p(-x2)”’) x ’ s o  1 CL 
2T ~ T ( - x  ) 

Aret(x) =- S(X’)- 

(10) 
= O  otherwise 

where p is the field mass and J1 a Bessel function. For the case of our two diametrically 
opposed particles we have to evaluate the total field at say z , (O)  = (0, r, 0, 0) due to 
the world line z2( t )  = (t, -r cos ut, r sin ut, 0) of the source particle. The extra field 
at z1 due to the mass p will be given by the integral 

S ( X - Z ~ ( ~ ) )  d t  d4x 

where to is the solution of ( zI - z2( t ) ) ’  = 0. (Since we are concerned only with making 
this integral zero we disregard constant factors.) The spacetime interval between the 
events z1 and z2 is 

[-(zl - Z ~ ) ~ I ” ~ = [ ~ ~ - ~ ~ ~ ( ~ + C O S  ut)]’” (12) 
so that letting K = r/A and T = ? / A ,  we have to check whether the integral 

wheref( T )  = { T~ - 2 ~ ’ [  1 + cos( U T /  K is zero for some p > 0. (Here T~ is the solution 
of f ( ~ )  = 0.) If this were the case, then the net force from the massive field would be 
the same as in the massless case. However, it is easy to see that this cannot be the 
case, for a change of the variable of integration to pAf shows that the integral Z ( p )  
is proportional to 1/p,  while a numerical integration shows Z ( 1 )  to be about unity for 
the values of r and U found previously. We therefore conclude that there does not 
exist a two-body solution of the type we are considering for the case of a massive field 
interaction. 
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